
IPT Group, IT Division, CERN
SPIDER

CVS Getting Started

Version: 1.0

Issue: 7

Edition: English

Status: Reviewed

ID: SPIDER-CVSTUT-0001-DOC

Date: 25 May 1999

Other Ref: CERN-UCO/1999/206
European Laboratory for Particle Physics

Laboratoire Européen pour la Physique des Particules

CH-1211 Genève 23 - Suisse

SPIDER CVS Getting Started
25 May 1999 Version/Issue: 1.0/7
page ii Reviewed

This document has been prepared using the Software Documentation Layout Templates that have been

prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European

Laboratory for Particle Physics). For more information, go to http://framemaker.cern.ch/.

SPIDER CVS Getting Started
Abstract Version/Issue: 1.0/7
Abstract

This document describes a system used for version control called CVS (Concurrent Versioning

System). Using CVS the various versions of files, the history and the differences between them

can be managed. It also supports developers working simultaneously on the same file.

Since it is a “Getting Started” it describes only the basic commands and features of CVS. For a

more detailed description of CVS see the links in section 10 .

The “Getting Started” is intended for developers who have no experience with CVS and

would like to start working with it. Nevertheless some knowledge of UNIX (basic commands)

is presumed.
Reviewed page iii

SPIDER CVS Getting Started
Abstract Version/Issue: 1.0/7
page iv Reviewed

SPIDER CVS Getting Started
Table of Contents Version/Issue: 1.0/7
Table of Contents

Abstract . iii

Table of Contents . .v

1 Introduction .7

1.1 Basic description of CVS .7

1.2 History .9

2 How to get started . 10

2.1 Setting up the repository . 10

2.1.1 Specifying the repository directory 10

2.1.2 Initializing the repository 10

2.1.3 Importing sources to your repository 11

3 A basic session under CVS . 12

3.1 Checking files in and out . 12

3.2 Defining a module . 14

3.3 Adding and removing files . 16

4 CVS used by many users . . 17

5 Viewing differences . . 22

6 Showing the history of files . 23

6.1 CVS history . . 23

6.2 CVS log . 24

7 Being informed on who else is working on a file 25

8 Tagging files . 26

9 Branches . 28

10 Useful Links . 29

10.1 Where to find CVS . . 29

10.2 Documentation and third party utilities 30

11 Future Work . 30
Reviewed page v

SPIDER CVS Getting Started
Table of Contents Version/Issue: 1.0/7
page vi Reviewed

SPIDER CVS Getting Started
1 Introduction Version/Issue: 1.0/7
1 Introduction

CVS (Concurrent Versioning System) is a system used for version control. Using CVS the

various versions of files, the history and the differences between them can be managed. It also

supports developers working simultaneously on the same file.

This “Getting Started” describes only the basic commands and features of CVS. For a more

detailed description of CVS see the links in section 10 .

The “Getting Started” is intended for developers who have no experience with CVS and

would like to start working with it. Nevertheless some knowledge of UNIX (basic commands)

is presumed.

1.1 Basic description of CVS

CVS (Concurrent Versioning System) is a version control system. Using CVS the different

versions of files can be managed. CVS can be used by one user but also by many users

working simultaneously on a file.

CVS used by one user

The benefit of CVS for a single user is that he can record the history of various versions of a

file (or group of files). If you have ever developed software the following problem may not be

unknown to you:

Real life example 1: In a rush to add a new rotation functionality for his brand new
visualization package developer Jerry worked all the night since the new release should be
delivered the next day. But finally, when trying to compile his source code he is unable to do
so. He searches for hours to find the bug but cannot find it. He decides to forget about the
new rotation functionality. “Delivering a working visualization package without the new
functionality is better than delivering nothing!” he thinks. But where are the sources which
he was able to compile just two days ago. Jerry has to admit that he has overwritten them.
But luckily there is some backup around. Nevertheless the last backup was made a week
ago, i.e. the newest features (i.e. the new geometries he liked so much!) are not included. So,
finally Jerry had neither a rotation functionality nor any new geometry to deliver!

If he had used CVS it would have been no problem to get the older version which includes his

geometries and Jerry’s nightly programming session would have ended happily.

CVS used by many users

When CVS is used by many people it shows its real strength: when several developers are

working (i.e. editing) concurrently on the same file(s) they often over write the changes of the

others. CVS can help to tackle this problem.

Real life example 2: Jerry asks his friend Tim to help him developing his visulatization
package since he does not see any chance to finish it in time. Tim has lots of free time in the
moment and he is happy to support Jerry. Jerry opens the file defining graphics elements
Reviewed page 7

SPIDER CVS Getting Started
1 Introduction Version/Issue: 1.0/7
graphic.java for including his geometries. Jerry programs his new geometries in a nightly
effort. Early in the morning Jerry saves the file and at home falls asleep - exhausted but
happy as he is - immediately. This night (or day) he is dreaming of his nice new
geometriess. An hour later Tim comes to work and opens the graphic.java file since he does
not like the background colour. By saving the file he deletes - unfortunately but
undeliberately- all the changes and thus all the geometries of which Jerry is dreaming in the
same moment. Jerry and Tim are no friends any more since that sad day!

Unlike other systems which use file locking for solving this problem CVS uses so called

unreserved checkouts.

File locking means that only one user can work simultaneously on one file. The file is stored in

a shared directory to which all developers have access. The developers Tim and Jerry work

directly on files contained in this directory (see Figure 1). To avoid the above mentioned

problem of over writing, a file is locked when opened by one developer for editing. That

means other developers can not open the file at the same time for editing it.

CVS by applying unreserved checkouts uses another approach: There is a central working area

to which everybody has access which is called repository. But the repository is more than a

simple shared directory: It is a kind of a database containing all versions of files put in the

repository.

Actually, the different versions of one file are not saved as different files in the repository for

reasons of disk consumption. CVS stores only the most recent version together with all

differences (deltas) to older versions.

Everybody works on a local copy of the file instead of working directly on the files contained

in the directory. The generation of a working file is done by copying the file stored in the

Figure 1 Jerry and Tim are working on the same file in the shared directory.

shared directory

graphics

control
Jerry Tim
page 8 Reviewed

SPIDER CVS Getting Started
1 Introduction Version/Issue: 1.0/7
repository to some working area. This activity is called checking out (illustrated by the dashed

line in Figure 2).

After a developer (e.g. Jerry) has done some changes to the local copy, the file can be put back

(or committed) to the repository1.The commit does not overwrite the older version of the file

but instead it generates automatically a new version of the file. Now Tim can update his local

copy to integrate the changes done by Jerry. This integration process (or merge) is done by CVS

if there is no conflict between Jerry’s and Tim’s changes. We will see later how CVS can help to

resolve such a conflict.

When a developer is finished with his work and has committed it back to the repository he

indicates that the file is not longer in use by releasing the local file(s). He does not need to keep

the local copies since he can get it back from the repository by checking them out.

1.2 History

CVS was designed and coded by Brian Berliner in 1989.

Nevertheless some older work shall be mentioned here since CVS is based on it: Dick Grune

wrote some shell scripts for concurrent versioning of files which he in posted to

comp.sources.unix in 1986.

Another contributor to CVS is Jeff Polk who helped Brian Berliner with the design of the CVS

module.

CVS is based on RCS (Revision Control System). The different versions of files are stored in

the same way as with RCS. What CVS offers in addition to RCS is better support for being

used by more than one user. Several users can work concurrently on the same file. RCS only

allowed one user at a time to edit the same file.

Figure 2 Jerry and Tim are working on their local files checked out of the repository to their own working
areas.

1. This is what Jerry should have done more frequently in the first example.

Repository

graphics

control
graphicsgraphics

TimJerry working area

of Tim
working area

of Jerry

version1.1 version1.1

version1.1

check outcheck out

version1.1
Reviewed page 9

SPIDER CVS Getting Started
2 How to get started Version/Issue: 1.0/7
2 How to get started

After all this trouble Jerry wants to use CVS to put his visualization project under

configuration control. In this chapter you see how he can do this.

2.1 Setting up the repository

Before being able to work with CVS you have to set up the repository. This is done by

• Specifying the repository directory

• Initializing the repository and

• Importing sources to your repository

2.1.1 Specifying the repository directory

One has to tell CVS in which directory it can create the repository by setting the CVSROOT

environment variable1.

Since Jerry wanted the repository to be in the work directory /work and to be named

repository he set CVSROOT to /work/repository.

If Jerry runs csh this is done with:

setenv CVSROOT /work/repository

Running sh this is done with:

CVSROOT=/work/repository

export CVSROOT

2.1.2 Initializing the repository

This is done with the cvs init command:

~jerry> cvs init 2

CVS creates the repository including a subdirectory CVSROOT containing administrative

files. Figure 3 shows the resulting repository structure that is created by CVS.

1. Environment variables are used by UNIX to specify various system attributes.

2. Throughout the document all commands that have been typed by a user are in Courier font with the

UNIX prompt proceeding the command. The output generated by CVS is in Courier font.
page 10 Reviewed

SPIDER CVS Getting Started
2 How to get started Version/Issue: 1.0/7
2.1.3 Importing sources to your repository

If one already has a directory structure which to put under CVS control this can be done by

using the import command.

Suppose the files Jerry wants to put under CVS control are in directory

~/visualizationproject which contains already two files graphics.c and control.c (see

Figure 4). If he wants them to appear in the repository under directory

projects/visualization , he can do this:

~jerry> cd ~/visualizationproject

~jerry/visualizationproject> cvs import -m “the visualization project”
projects/visualization vendor_release_1_4 release_3_4

This command imports the files of the current directory into a subdirectory

projects/visualization in the repository.

The -m flag is used for a log message which is stored in the repository with the imported files.

We will see later in section 6 how they can be used.

Don’t worry about the last two flags for the moment1.

The output of CVS after having issued this command is the following:

N projects/visualization/graphics.c
N projects/visualization/control.c

No conflicts created by this import

The N stands for new. CVS realized that graphics.c and control.c are new files being

added to the /work/repository repository.

Figure 3 The initialized repository structure.

/work/repository/

CVSROOT/

1. These are necessary for the import command and specify the vendor respectively release tag.
Reviewed page 11

SPIDER CVS Getting Started
3 A basic session under CVS Version/Issue: 1.0/7
The resulting repository can be seen in Figure 4.

CVS created a first version for each of the files. The initial version number is 1.1.

The local files under ~jerry/visualizationproject can be deleted now since they are stored

in the CVS repository.

Nevertheless do not forget to make a back up of the CVS repository. CVS does not relieve

from the need for a back up since the loss of the file system will result in the loss of the CVS

repository.

3 A basic session under CVS

3.1 Checking files in and out

Usually one single user (like Jerry) is working in the following way with CVS:

He changes to his working area:

~jerry> cd /home/jerry

He uses the checkout command to get a local copy of a directory residing in the repository

~jerry> cvs checkout projects/visualization

cvs checkout: Updating projects/visualization
U projects/visualization/control.c
U projects/visualization/graphics.c

The U stands for updated. CVS is telling Jerry that new versions of graphics.c and

control.c have been checked out of the repository under his working directory, ready to be

used.

Figure 4 The files in the repository got a suffix ,v which is generated automatically by CVS. These files
contain the most recent version and all differences (deltas) to older versions.

CVSROOT/ projects/

visualization/

control.c,v graphics.c,v

repository/

visualizationproject/

version1.1 version1.1
control graphics

import

/home/jerry//work/
page 12 Reviewed

SPIDER CVS Getting Started
3 A basic session under CVS Version/Issue: 1.0/7
Now Jerry has a subdirectory projects/visualization in his working directory /home/jerry

(see Figure 5).

He changes to subdirectory projects/visualization to work with the new checked out files.

~jerry> cd projects/visualization

and edits the file graphics.c using e.g. vi to finally add his new geometries.

~jerry/projects/visualization> vi graphics.c

When he thinks that his changes to the file are finished for the moment he puts the

graphics.c file back to the repository by committing the current working directory. But first

he changes to the directory where he checked out his project.

~jerry/projects/visualization> cd ../..

~jerry> cvs commit -m "new geometries added" projects

cvs commit: Examining projects
cvs commit: Examining projects/visualization
cvs commit: Committing projects/visualization
Checking in projects/visualization/graphics.c;
/work/repository/projects/visualization/graphics.c,v <-- graphics.c
new revision: 1.2; previous revision: 1.1
done

CVS recursively examines all subdirectories of project and commits to the repository only

files which have been changed. In the output you see that CVS only repots on the graphics.c

file which is the only file Jerry changed.

The -m flag, as for the input used, allows Jerry to write a comment on the reason for his

change1.

Figure 5 Checking out a directory.

1. If the -m flag is not used cvs opens the preferred editor for Jerry to type a multi-line log text.

/home/jerry/

CVSROOT/ projects/

visualization/

control.c,v graphics.c,v

repository/

projects/

visualization/

version1.1 version1.1

control graphics

version1.1 version1.1

check out

/work/
Reviewed page 13

SPIDER CVS Getting Started
3 A basic session under CVS Version/Issue: 1.0/7
CVS automatically creates a new version of the changed file graphics.c file (see

Figure 6). Do not conclude from the figure that the old version 1.1 of file graphics.c is

deleted. The version number shows only the most recent version 1.2. The old version 1.1 is

stored in the same file as described in section 1.1 .

Now the local copy in the working area can be released and removed:

~jerry> cvs release -d projects

You have [0] altered files in this repository.
Are you sure you want to release module `projects': y

The -d flag results in the removal of the projects subdirectory.

Thus the cvs release -d command is similar to the UNIX remove command (rm -r). The

difference is that release checks before removing a file whether all changes have been

committed back to the repository.

If Jerry had forgotten to commit, the release command would have resulted in the following

message:

~jerry> cvs release -d projects

M visualization/graphics.c
You have [1] altered files in this repository.
Are you sure you want to release (and delete) module `projects': y
visualization/graphics.c has been modified; revert changes? y

3.2 Defining a module

To group together a set of related files and directories CVS offers modules. This can be

convenient for e.g. checking out files and directories by its module name instead of its

individual file and directory names.

Figure 6 Checking in a directory.

/home/armin/

CVSROOT/ projects/

visualization/

control.c,v graphics.c,v

myRepository/

projects/

visualization/

work/

version1.1 version1.2
control graphics

version1.1 version1.2

check in
page 14 Reviewed

SPIDER CVS Getting Started
3 A basic session under CVS Version/Issue: 1.0/7
Jerry wants to create a module for his visualization project. Therefore he has to edit the file

modules which is in subdirectory CVSROOT/ in the repository. He issues

~jerry> cvs checkout CVSROOT/modules

U CVSROOT/modules

~jerry> cd CVSROOT

~jerry/CVSROOT> vi modules

Jerry adds a new line that defines his module naming it vis :

vis projects/visualization

For the syntax of the modules file see the CVS reference manual which can be found in the

links given in section 10 .

Now he commits the changes to the modules file:

~jerry/CVSROOT> cvs commit -m “added the module vis” modules

Checking in modules;
/work/repository/CVSROOT/modules,v <-- modules
new revision: 1.2; previous revision: 1.1
done
cvs commit: Rebuilding administrative file database

Finally he releases the CVSROOT directory:

~jerry/CVSROOT> cd ..

~jerry> cvs release -d CVSROOT

You have [0] altered files in this repository.
Are you sure you want to release (and delete) module `CVSROOT': y

Now Jerry can check out the visualization project by using its module name vis instead of its

directory path projects/visualization:

~jerry> cvs checkout vis

cvs checkout: Updating vis
U vis/control.c
U vis/graphics.c

Notice that the working files of the visualization project are now in subdirectory vis not in

subdirectory projects/visualization .

~jerry> cd vis

In this example Jerry used the module name as an alias. But there are more applications of

modules. These are described in section The modules file in the Appendix CVS Reference Manual
for Administrative Files of Cederquists “Version Management with CVS” document. This

document can be found in the 1. link which is given in section 10.2 .
Reviewed page 15

SPIDER CVS Getting Started
3 A basic session under CVS Version/Issue: 1.0/7
3.3 Adding and removing files

With cvs add files can be scheduled for being put under version control.

Jerry needs two new files io.c and mem.c in his visualization project. Therefore he creates

the files using e.g. vi in his current working directory:

~jerry/vis> vi io.c

~jerry/vis> vi mem.c

Now he can add the files to the visualization project:

~jerry/vis> cvs add io.c mem.c

cvs add: scheduling file `io.c' for addition
cvs add: scheduling file `mem.c' for addition
cvs add: use 'cvs commit' to add these file permanently

Now the files have to be committed to actually check them into the repository. Other

developers (like Tim) can not see the files until this step is performed.

~jerry/vis> cvs commit -m "files io.c and mem.c added"

RCS file: /work/repository/projects/visualization/io.c,v
done
Checking in io.c;
/work/repository/projects/visualization/io.c,v <-- io.c
initial revision: 1.1
done
RCS file: /work/repository/projects/visualization/mem.c,v
done
Checking in mem.c;
/work/repository/projects/visualization/mem.c,v <-- mem.c
initial revision: 1.1
done

To remove a file from a module cvs remove can be used. Files deleted with this command can

be retrieved later if necessary from the repository.

Jerry wants to remove the mem.c file from his visualization module. To do this he first has to

make sure that there are no uncommitted modifications to the file. Then he removes the file

from his working directory:

~jerry/vis> rm mem.c

Now he can delete the file from his module vis :

~jerry/vis> cvs remove mem.c

cvs remove: scheduling `mem.c' for removal
cvs remove: use 'cvs commit' to remove this file permanently

~jerry/vis> cvs commit
page 16 Reviewed

SPIDER CVS Getting Started
4 CVS used by many users Version/Issue: 1.0/7
4 CVS used by many users

When more than one users are working with CVS things get a little bit more complicated. This

is due to the fact that other users can edit a file on which you are working currently. This

problem has been addressed briefly in section 1.1 .

In this section you will see in detail how Jerry and Tim can use CVS to avoid overwriting their

files when working simultaneously on them.

Figure 7 illustrates a scenario where Tim and Jerry are working on the same file. It shows

vertically the sequence of actions (i.e. cvs commands or editing activities) performed by Jerry

and Tim. The picture is divided horizontally into the working areas of the developers and the

repository. Only the version number of file graphics.c is shown.

Step 1 Tim checks out the file graphics.c to add the new rotation functionality. He does this as

described in section 3 by changing to his working area and using cvs checkout .

~tim> cd /home/tim

~tim> cvs checkout projects/visualization

cvs checkout: Updating projects/visualization
U projects/visualization/control.c
U projects/visualization/graphics.c

Step2 Jerry checks out the graphics.c file in the same way to his working area.

~jerry> cd /home/jerry

~jerry> cvs checkout projects/visualization

cvs checkout: Updating projects/visualization
U projects/visualization/control.c
U projects/visualization/graphics.c

Step3 Tim edits the file and includes some lines of code (e.g. to change the rotation functionality).

~tim> cd projects/visualization

~tim/projects/visualization> vi graphics.c

Step 4 When Tim is content with the new rotation functionality he commits the file back to the

repository using cvs commit .

~tim> cd ../..

~tim> cvs commit -m "new geometries added"

cvs commit: Examining projects
cvs commit: Examining projects/visualization
cvs commit: Committing projects/visualization
Checking in projects/visualization/graphics.c;
/work/repository/projects/visualization/graphics.c,v <-- graphics.c
new revision: 1.2; previous revision: 1.1
Reviewed page 17

SPIDER CVS Getting Started
4 CVS used by many users Version/Issue: 1.0/7
done
Figure 7 More than one user are working on the same file.

Activities

1 Tim checks out

graphics.c

2 Jerry checks

out graphics.c

3 Tim edits

graphics.c

4 Tim commits

file

5 Jerry has

edited file

6 Jerry commits

file

graphics.c 1.1

control.c 1.1

Tim’s working area Jerry’s working areaRepository

graphics.c 1.1

graphics.c 1.1 graphics.c 1.1

graphics.c 1.1

graphics.c 1.1

graphics.c 1.1

?

graphics.c 1.2

graphics.c 1.1

changed

graphics.c

graphics.c 1.2

graphics.c 1.3

graphics.c 1.2

graphics.cgraphics.c 1.2

graphics.c 1.2

changed

graphics.c 1.4
page 18 Reviewed

SPIDER CVS Getting Started
4 CVS used by many users Version/Issue: 1.0/7
Step 5 In the meantime Jerry has edited the file. He has changed the background colour.

~jerry> cd projects/visualization

~jerry/projects/visualization> vi graphics.c

Step 6 When Jerry commits the file back to the repository he has a problem. There is already a newer

version in the repository (version 1.2 which contains the changes made by Tim) than the

version on which Jerry’s local file is changed. What should CVS do know? Generate a new

version with Jerry’s changes or merge the changes made by the two developers?

To make it short: CVS does not allow Jerry to commit the file since there exists a newer

revision than the revision on which his modification is based.

The output message from CVS Jerry gets after having issued the commit command is the

following:

~jerry/projects/visualization> cd ../..

~jerry> cvs commit -m "background color changed"

cvs commit: Examining projects
cvs commit: Examining projects/visualization
cvs commit: Up-to-date check failed for `projects/visualization/graphics.c'
cvs [commit aborted]: correct above errors first!

The commit failed.

Step 7 What Jerry has to do before being able to commit the file is updating his local copy with the

current version to include the modifications made by Tim:

~jerry> cvs update project

This update can have two effects:

1. Either CVS is able to merge automatically the changes (step 8a in Figure 8)
Reviewed page 19

SPIDER CVS Getting Started
4 CVS used by many users Version/Issue: 1.0/7
2. or, this merge has to be done manually because of a conflict (steps 8b and 9b in

Figure 9):

Step 8a CVS is able to merge all changes made by Tim to the graphics.c file into the working file of

Jerry if the changes that Tim made are in a different part than the changes Jerry made.

~jerry> cvs update project

RCS file: /work/repository/projects/visualization/graphics.c,v
retrieving revision 1.1
retrieving revision 1.2
Merging differences between 1.1 and 1.2 into graphics.c
M graphics.c

(Go to step 10).

Figure 8 When more than one user have edited the same file an update may be necessary. Only Jerry is
shown as Tim does not perform any other actions for the moment.

5 Jerry has

edited file

7 Jerry issues an update

command.

8a CVS merges changes.

graphics.c 1.2

control.c 1.1

Jerry’s working areaRepository

graphics.c 1.2 graphics.c

changed

graphics.c 1.2 graphics.c

updated
page 20 Reviewed

SPIDER CVS Getting Started
4 CVS used by many users Version/Issue: 1.0/7
Step 8b But if Jerry and Tim have changed the same lines of the file there is a conflict which cannot be

solved by CVS. Thus CVS prints a warning and the resulting file in Jerry’s working area

contains both versions of the lines that overlap, delimited by special markers (see Figure 9).

~jerry> cvs update project

This is the output when CVS detects a conflict:

RCS file: /work/repository/projects/visualization/graphics.c,v
retrieving revision 1.1
retrieving revision 1.2
Merging differences between 1.1 and 1.2 into graphics.c
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in graphics.c
C graphics.c

Step 9b Jerry has to resolve this overlap or conflict by editing the file again.

Here is the file resulting from the merge:

~jerry> more graphics.c

unchanged lines
.....
<<<<<<< graphics.c
Jerry’s added or changed lines

Figure 9 When more than one user are working on the same file a conflict can occur.

5 Jerry has

edited file

7 Jerry issues an update.

8b CVS detects a

conflict and generates a

merge file.

graphics.c 1.2

control.c 1.1

Jerry’s working areaRepository

9b Jerry edits local file.

graphics.c 1.2 graphics.c

changed

graphics.c 1.2 graphics.c

updated=

merged

graphics.c

edited
Reviewed page 21

SPIDER CVS Getting Started
5 Viewing differences Version/Issue: 1.0/7
....
=======
Tim’s added or changed lines
....
>>>>>>> 1.2
unchanged lines
....

The lines which differ and which were changed by Jerry are shown between the <<<<<<<

graphics.c delimiter and the ======= delimiter. This is the current state of the file in the

working copy.

The lineswhich differ and which were changed by Tim are shown between the =======

delimiter and the >>>>>>> 1.2 delimiter. This is the current state of the file in the repository

(revision 1.2).

Jerry has to choose which of the 2 sections to keep, then he makes the changes and removes

the other section.

Step 10 After having resolved the conflict (8b and 9b) or after an update without a conflict (8a) Jerry

can commit his local copy to the repository. CVS generates a new version 1.3.

~jerry> cvs commit -m "background color changed"

cvs commit: Examining projects
cvs commit: Examining projects/visualization
cvs commit: Committing projects/visualization
Checking in projects/visualization/graphics.c;
/work/repository/projects/visualization/graphics.c,v <-- graphics.c
new revision: 1.3; previous revision: 1.2
done

5 Viewing differences

Using cvs diff the differences between the local working copy and the file in the repository

can be viewed.

Assume that Jerry after his commit, which resulted in the creation of revision 1.3 has made

some changes to his local graphics.c file. Some hours later he does not know any more which

changes he made. He can check this by using the cvs diff command:

~jerry> cvs diff projects/visualization/graphics.c

Figure 10 After the file has been updated or the conflict released it can be committed.

10 Jerry

commits file
graphics.c 1.3 graphics.c 1.3
page 22 Reviewed

SPIDER CVS Getting Started
6 Showing the history of files Version/Issue: 1.0/7
CVS uses the UNIX diff utility to compare the local copy of the file in Jerry’s work directory

with the most recent revision in the repository file (here 1.3) and outputs the result:

===
RCS file: /work/repository/projects/visualization/graphics.c,v
retrieving revision 1.3
diff -r1.3 graphics.c
0a1
> # I added this line
>

In fact, the diff command allows to view the difference between any two revisions.

If you remember the scenario described in section 3 Tim had made a commit and created the

version 1.2 of graphics.c . Since he did not perform a release yet, he still has in his working

directory this version of graphics.c . Now Tim is notified that a new version 1.3 has been

created by a commit issued by Jerry. Tim is interested in the changes made by Jerry. Thus he

issues a cvs diff command:

~tim> cvs diff -r 1.3 projects/visualization/graphics.c

This command compares the current working file of Tim (revision 1.2) with revision 1.3.

The output could be the following:

===
RCS file: /work/repository/projects/visualization/graphics.c,v
retrieving revision 1.3
retrieving revision 1.2
diff -r1.3 -r1.2
3c3
< # Jerry’s added or changed lines
<....

> # Tim’s added or changed lines
>....
>

As you can see there is a difference in the same set of lines. This is what resulted in the conflict

in step 8b in the scenario in section 3 .

6 Showing the history of files

6.1 CVS history

With the cvs history command information about the CVS repository can be found. You can

see who has issued which command when. The output of the history command can be

adapted to the user-specific wishes showing only specific commands (like checkouts, commits

etc.).
Reviewed page 23

SPIDER CVS Getting Started
6 Showing the history of files Version/Issue: 1.0/7
The history output for the example in section 4 (Figure 7) looks like the following:

~/tim/work/projects/visualization> cvs history -e

O 04/13 08:48 +0000 tim projects/visualization =projects/visualization= ~/tim
O 04/13 08:49 +0000 jerry projects/visualization =projects/visualization=
~/jerry
M 04/13 08:49 +0000 tim projects/visualization =projects/visualization= ~/tim
G 04/13 08:53 +0000 jerry projects/visualization =projects/visualization=
~/jerry
M 04/13 08:53 +0000 jerry projects/visualization =projects/visualization=
~/jerry

The single letters in the first line have the following meaning:

O Checkout

M A file was committed and modified

G A merge was necessary but a collision was detected

6.2 CVS log

With the cvs log command the log messages entered for each commit can be looked through.

The log output for the example in section 4 could look like the following:

~/tim/work/projects/visualization> cvs log graph.c

cvs log: Logging .

RCS file: /work/repository/projects/visualization/graphics.c,v
Working file: graphics.c
head: 1.3
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:

revision 1.3
date: 1999/04/14 14:51:08; author: jerry; state: Exp; lines: +1 -0
background color changed

revision 1.2
date: 1999/04/14 12:51:08; author: tim; state: Exp; lines: +1 -0
new geometries added

revision 1.1
date: 1999/04/12 00:51:08; author: jerry; state: Exp; lines: +1 -0
initial revision

For a description of the log output see the links in section 10 .
page 24 Reviewed

SPIDER CVS Getting Started
7 Being informed on who else is working on a file Version/Issue: 1.0/7
7 Being informed on who else is working on a file

Sometimes it is interesting to know who else is working on a file. This information could be

useful if developers would like to coordinate their work.

Jerry wants to know when Tim is working on the graphics.c file. Therefore he issues the

following command after having checked out the visualization package files:

~/jerry/work/projects/visualization> cvs watch on graphics.c

Looking at the content of the local working directory (projects/visualization) he can see

that the graphics.c file is now read only.

~/jerry/work/projects/visualization> ls -l

total 6
drwxr-xr-x 2 jerry jp 2048 Apr 13 11:18 CVS/
-rw-r--r-- 1 jerry jp 0 Apr 12 11:56 control.c
-r--r--r-- 1 jerry jp 131 Apr 13 10:02 graphics.c

When Tim is checking out the graphics.c file it is also in read only mode. To edit the file he

must first issue the cvs edit command:

~/tim/work/projects/visualization> cvs edit graphics.c

Now the graphics.c file is in read-write mode:

~/tim/work/projects/visualization> ls -l

total 6
drwxr-xr-x 3 tim jp 2048 Apr 13 11:22 CVS/
-rw-r--r-- 1 tim jp 0 Apr 12 11:56 control.c
-rw-r--r-- 1 tim jp 131 Apr 13 10:02 graphics.c

One could object that you can do this with a simple UNIX chmod command. But the advantage

of using cvs watch on is that Jerry can check whether Tim is working on graphics.c by

issuing the following command:

~/jerry/work/projects/visualization> cvs editors graphics.c

He gets a list of all developers who have issued a cvs edit command on graphics.c .

graphics.c tim Tue Apr 13 09:22:42 1999 GMT ipts02
~/tim/work/projects/visualization

This information can also be sent automatically (e.g. by email) whenever somebody issues the

cvs edit command. CVS provides a so called notification mechanism with the cvs watch add

command.

The notification mechanism is specified in the notify administrative file.

For more details see section Mechanisms to track who is editing files in Cederquists “Version
Management with CVS” document. This document can be found in the 1. link which is given in

section 10.2 .
Reviewed page 25

SPIDER CVS Getting Started
8 Tagging files Version/Issue: 1.0/7
8 Tagging files

After having added the new geometries and the new rotation functionality Jerry thinks he
can deliver a new release of his visualization package. The new release is given the name
release-1-2 . The files which go into the new release are:

graphics 1.3

control 1.1

io 1.2

You can see this in Figure 11.

The revision numbers of the files have nothing to do with the release name.

To group together all the files which belong to one release CVS offers release tags. The files are

tagged with a symbolic name. Afterwards, the files can be referenced by the tag. Thus, all the

files which belong to one release can be referenced (e.g. checked out) easily.

Assume that Jerry’s working directory contains the above revisions. To tag all revisions of files

which are currently in the working directory Jerry issues the following command

~/jerry/work/projects/visualization> cvs tag release-1-2 .

This command tells CVS that when we talk about release-1-2 we mean graphics.c 1.3,

control.c 1.1 and io.c 1.2.

The output of CVS is the following:

cvs tag: Tagging .
T control.c
T graphics.c
T io.c

Figure 11 The repository contains the files graphics.c, control.c and io.c in different revisions. The
most recent revision of each file is the revision on the bottom. release-1-2 consists of the most recent
revisions.

graphics.c control.c io.c

1.1 1.1 1.1

1.3

1.2 1.2 release-1-2
page 26 Reviewed

SPIDER CVS Getting Started
8 Tagging files Version/Issue: 1.0/7
Jerry and Tim continue working on the files and thus generate new revisions. A week later the

repository contains the revisions of the files graphics.c, control.c and io.c as shown in

figure Figure 12. The most recent revisions are shown again on the bottom and are graphics.c

1.4, control.c 1.3 and io.c 1.3. Nevertheless the release named release-1-2 has not

changed. It contains still graphics.c 1.3, control.c 1.1 and io.c 1.2.

Later, Jerry can check out these files by using the tag name:

~/jerry/work> cvs checkout -d visu-r12 -r release-1-2 projects/visualization

cvs checkout: Updating visu-r12
U visu-r12/control.c
U visu-r12/graphics.c
U visu-r12/io.c

The -d option is used to check out in a separate directory than the standard woking directory.

This allows to have different releases in different working directories.

After this command Jerry gets exactly the revisions of files which went into the release

release-1-2 .

This can be shown by using the cvs status command which shows the status of the files in

the current directory:

~/jerry/work> cd visu-r12

~/jerry/work/visu-r12> cvs status

cvs status: Examining .
===
File: control.c Status: Up-to-date

 Working revision: 1.1 Wed Apr 21 14:51:08 1999
 Repository revision: 1.3 /work/repository/projects/visualization/control.c,v
 Sticky Tag: release-1-2 (revision: 1.1)
 Sticky Date: (none)
 Sticky Options: (none)

Figure 12 release-1-2 consists of the revisions graphics.c 1.3, control.c 1.1 and io.c 1.2.

The most recent revisions are graphics.c 1.4, control.c 1.3 and io.c 1.3.

graphics.c control.c io.c

1.1 1.1 1.1

1.3 1.3 1.3

1.2 1.2 1.2

1.4

release-1-2
Reviewed page 27

SPIDER CVS Getting Started
9 Branches Version/Issue: 1.0/7
===
File: graphics.c Status: Up-to-date

 Working revision: 1.3 Tue Apr 13 15:44:59 1999
 Repository revision: 1.4 /work/repository/projects/visualization/graphics.c,v
 Sticky Tag: release-1-2 (revision: 1.3)
 Sticky Date: (none)
 Sticky Options: (none)
===
File: io.c Status: Up-to-date

 Working revision: 1.2 Tue Apr 13 15:44:59 1999
 Repository revision: 1.3 /work/repository/projects/visualization/io.c,v
 Sticky Tag: release-1-2 (revision: 1.2)
 Sticky Date: (none)
 Sticky Options: (none)

It can be seen that there are newer revisions in the repository but by specifying the release flag

the older revisions of each of the files are checked out. E.g. for io.c the version 1.3 exists in the

repository but by specifying release-1-2 as symbolic name when checking out Jerry got the

version 1.2 for io.c.

9 Branches

Jerry and Tim continue to improve the release-1-2 to create a new release-1-3 . A week

after the release date they get a complaint that there is an error in the release. They want to

solve the bug immediately but the development for release-1-3 is too advanced but not

settled yet. So they need some mechanism to work independently on the bug fix and the

improvements to release-1-2 . For this aim CVS offers branches.

Jerry creates a branch out of release-1-2 :

~/jerry/work/projects/visualization> cvs rtag -b -r release-1-2
release-1-2-patch projects/visualization

cvs rtag: Tagging projects/visualization

Figure 13 shows the resulting “main trunk” and “branch trunk” of the releases.

Figure 13 Creating a branch.

release-1-1 release 1-2 release 1-3

release-1-2-patch

main trunk

branch trunk
page 28 Reviewed

SPIDER CVS Getting Started
10 Useful Links Version/Issue: 1.0/7
CVS created for the different versions of files of release-1-2 new versions. The initial version

numbers for the files in the branch release-1-2-patch are the version number of the file on

which the new branch version is based added by 1.2. So release-1-2 -patch consists of the

files graphics.c 1.3.1.2, control.c 1.1.1.2 and io.c 1.2.1.2. This can be seen in

Figure 14.

Now they can work independently and in parallel on the main trunk and the branch trunk

using the same mechanisms as described in 4 .

10 Useful Links

10.1 Where to find CVS

• At CERN it is available via ASIS on UNIX platforms

• http://www.loria.fr/~molli/cvs-index.html

This page is the so called CVS bubbles page. It contains the latest release of CVS as

well as documentation on it. Additionally, it contains links to tools related to CVS,

mailing lists and web pages on CVS.

Figure 14 By creating a branch CVS created new versions. The figure shows to which release the different
versions belong to.

graphics.c control.c io.c

1.1 1.1 1.1

1.2 1.2 1.2

1.4

1.1.1.21.3.1.2

1.3 1.3 1.3

1.2.1.2

release-1-2-patch

release-1-2
Reviewed page 29

SPIDER CVS Getting Started
11 Future Work Version/Issue: 1.0/7
10.2 Documentation and third party utilities

1. http://www.loria.fr/cgi-bin/molli/wilma.cgi/doc

This page contains different documentation on CVS ranging from FAQs, tutorials to

detailed reference manuals on CVS (e.g. Cederquists “Version Management with
CVS”).

2. http://www.cyclic.com

This page is the official page of cyclic, an organization providing support for CVS.

It contains links to various CVS-related topics.

11 Future Work

This “Getting Started” does not cover all the commands and features of CVS since this would

lead to far. It is not planned to include all of them in a future version, either, since there are

existing documents describing the CVS commands in detail.

What we plan for a future version is to describe the usage of CVS on AFS (including e.g.

security aspects) and how to use CVS on NICE/NT.
page 30 Reviewed

	SPIDER
	CVS Getting Started
	European Laboratory for Particle Physics Laboratoire Européen pour la Physique des Particules CH-...
	Abstract
	Table of Contents
	1�� Introduction
	1.1�� Basic description of CVS
	Figure�1 Jerry and Tim are working on the same file in the shared directory.
	Figure�2 Jerry and Tim are working on their local files checked out of the repository to their ow...

	1.2�� History

	2�� How to get started
	2.1�� Setting up the repository
	2.1.1�� Specifying the repository directory
	2.1.2�� Initializing the repository
	Figure�3 The initialized repository structure.

	2.1.3�� Importing sources to your repository
	Figure�4 The files in the repository got a suffix ,v which is generated automatically by CVS. The...

	3�� A basic session under CVS
	3.1�� Checking files in and out
	Figure�5 Checking out a directory.
	Figure�6 Checking in a directory.

	3.2�� Defining a module
	3.3�� Adding and removing files

	4�� CVS used by many users
	Figure�7 More than one user are working on the same file.
	Step 1
	Step2
	Step3
	Step 4
	Step 5
	Step 6
	Step 7
	1. Either CVS is able to merge automatically the changes (step 8a in Figure�8)
	2. or, this merge has to be done manually because of a conflict (steps 8b and 9b in Figure�9):
	Figure�8 When more than one user have edited the same file an update may be necessary. Only Jerry...

	Step 8a
	Step 8b
	Figure�9 When more than one user are working on the same file a conflict can occur.

	Step 9b
	Step 10
	Figure�10 After the file has been updated or the conflict released it can be committed.

	5�� Viewing differences
	6�� Showing the history of files
	6.1�� CVS history
	6.2�� CVS log

	7�� Being informed on who else is working on a file
	8�� Tagging files
	Figure�11 The repository contains the files graphics.c, control.c and io.c in different revisions...
	Figure�12 release-1-2 consists of the revisions graphics.c 1.3, control.c 1.1 and io.c 1.2. The m...

	9�� Branches
	Figure�13 Creating a branch.
	Figure�14 By creating a branch CVS created new versions. The figure shows to which release the di...

	10�� Useful Links
	10.1�� Where to find CVS
	10.2�� Documentation and third party utilities
	1. http://www.loria.fr/cgi-bin/molli/wilma.cgi/doc
	2. http://www.cyclic.com

	11�� Future Work

